Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) $x - \frac{1}{2}, \frac{1}{2} - y, \frac{1}{2} + z$; (iii) 1 - x, -y, 1 - z; (iv) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$; (v) $x - \frac{1}{2}, \frac{1}{2} - y, z - \frac{1}{2}$; (vi) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{3}{2} - z$.

Data were corrected for Lorentz-polarization effects. The unitcell dimensions were found by indexing the powder diffraction pattern with the program *DICVOL91* (Boultif & Louër, 1991). The final parameters were refined by the program *NBS*AIDS83* (Mighell, Hubbard & Stalick, 1981). The structure of (I) was solved by the Patterson method (Ce and K) and one subsequent difference Fourier synthesis (all other atoms). For (II), the atomic coordinates of the isostructural compound (NH₄)₂Ce(NO₃)₆ (Beineke & Delgaudio, 1968) were used as initial coordinates in the refinement. Calculations were performed with the *MolEN* (Fair, 1990) package on a MicroVAX 3100 computer. Diagrams were prepared using *OR-TEPII* (Johnson, 1976).

The authors are grateful to Dr L. Toupet for his assistance in the collection of the single-crystal X-ray diffraction data.

Lists of structure factors and anisotropic displacement parameters have been deposited with the IUCr (Reference: DU1103). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Beineke, T. A. & Delgaudio, J. (1968). Inorg. Chem. 7, 715-721.
- Boultif, A. & Louër, D. (1991). J. Appl. Cryst. 24, 987-993.
- Brown, I. D. (1981). Structure and Bonding in Crystals, Vol. II, edited by M. O'Keeffe & A. Navrotsky, ch. 14, pp. 1-30. London: Academic Press.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Guillou, N. (1994). PhD thesis, Univ. of Rennes I, France.
- Guillou, N., Auffrédic, J. P. & Louër, D. (1993). Powder Diffr. 8, 57-59.
- Guillou, N., Auffrédic, J. P. & Louër, D. (1994). J. Solid State Chem. 112, 45–52.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Leclaire, A. (1979). J. Solid State Chem. 28, 235-244.

- Meyer, R. J. & Jacoby, R. (1901). Z. Anorg. Chem. 27, 359-389.
- Mighell, A. D., Hubbard, C. R. & Stalick, J. K. (1981). NBS*AIDS80: A Fortran Program for Crystallographic Data Evaluation. Natl Bur. Stand. (US Technical Note 1141). (NBS*AIDS83 is an expanded version of NBS*AIDS80.)
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Stout, G. H. & Jensen, L. H. (1968). X-ray Structure Determination. London: MacMillan.
- Trahanovsky, W. S., Young, L. B. & Brown, G. L. (1967). J. Org. Chem. 32, 3865–3868.

Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1995). C51, 1032-1034

Cerous Potassium Nitrate, K₃Ce₂(NO₃)₉

N. GUILLOU, J. P. AUFFRÉDIC AND D. LOUËR

Laboratoire de Cristallochimie, CSIM (URA CNRS 1495), Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes CEDEX, France

(Received 27 September 1994; accepted 21 December 1994)

Abstract

The structure of cerous potassium nitrate, $K_3Ce_2(NO_3)_9$, which can be synthesized from an aqueous solution of cerous nitrate hexahydrate and potassium nitrate, or from a nitric acid solution of hydrated ceria and potassium nitrate, has been solved by single-crystal X-ray diffraction analysis. It comprises an anionic, $[Ce_2(NO_3)_9]^{3-}$, network of irregular icosahedra formed by bidentate nitrate groups around Ce atoms and linked to one another by bridging nitrate groups. The K atoms are located in the holes of the structure.

Comment

In a previous study (Guillou, Auffrédic, Louër & Louër, 1993), it was shown that Ce^{III} compounds could be obtained from a solution of hydrated ceria in nitric acid. In the course of the investigation of the system CeO_{2-} KNO₃-HNO₃-H₂O, a new cerium(III) nitrate compound was obtained. Indeed, from the dissolution in nitric acid of active hydrated ceria and potassium nitrate in stoichiometric quantities (ratio 1:2), colourless crystals appear at 313 K together with crystals of $K_2Ce(NO_3)_6$, the structures of two polymorphic phases of which have been reported (Guillou, Louër, Auffrédic & Louër, 1995). An alternative synthesis of the new compound is by the evaporation at 313 K of an aqueous solution of cerous nitrate hexahydrate and potassium nitrate (ratio 2:3). This reaction demonstrates that the new phase is a Ce^{III} compound. Furthermore, the crystal structure determination reported here shows that this compound is the tripotassium dicerium(III) nitrate, K₃Ce₂(NO₃)₉.

The structure of the title compound (Fig. 1) consists of a three-dimensional $[Ce_2(NO_3)_9]^{3-}$ network of irregular icosahedra in which Ce atoms are twelvefold coordinated (Fig. 2). The coordination of the Ce atoms involves six bidentate nitrate groups. Three of these nitrate groups each bridge two icosahedra. This network can also be described as spirals running along the *c* axis (Fig. 3). As a result of the cubic symmetry, these spirals also run along the *a* and *b* axes, from which the three-dimensional network arises. The mean Ce—O distance (2.649 Å) is similar to the value (2.649 Å) calculated by the bond-valence method (Brown, 1981) for Ce^{III} bonded to 12 O atoms. This value is in agreement with those found for Ce(NO₃)₅(H₃O)₂.H₂O (mean value 2.638 Å; Guillou, Auffrédic, Louër & Louër, 1993) and Ce₂Mg₃(NO₃)₁₂.24H₂O (mean value 2.64 Å; Zalkin, Forrester & Templeton, 1963).

The first nitrate group (N1) is symmetrically bidentate and belongs to the class I_{2b} , proposed by Leclaire (1979). As found for this class of nitrate compounds, the distance from the N atom to the non-coordinated O atom [1.217 (8) Å] is significantly shorter than the other N—O distances (mean value 1.265 Å). The displacement parameter of the free O atom of the nitrate group is higher than those of the coordinated O atoms, and the O—N—O angle between the two coordinated O atoms is smaller than the O—N—O angles involv-

Fig. 1. Projection of the structure of $K_3Ce_2(NO_3)_9$ along the *c* axis. Large circles represent K atoms.

Fig. 2. View of the environment of the independent Ce atom showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 20% probability level.

Fig. 3. Stereoscopic view of one spiral in the unit cell of $K_3Ce_2(NO_3)_9$.

ing the free O atom. The second nitrate group (N2) bridges two icosahedra and ensures the continuity of the structure. The O atoms are thus bonded to Ce atoms as in the class II_{3b} (Leclaire, 1979). The bond length from the N atom to the twofold-coordinated O atom [1.275 (5) Å] is significantly longer than the other N—O distances [1.234 (7) Å] and the displacement parameter of the twofold-coordinated O atom is also lower. It can be noted that this class of nitrate groups was also found in the structure of the hydronium cerium(III) nitrate hydrate, Ce(NO₃)₅(H₃O)₂.H₂O (Guillou, Auffrédic, Louër & Louër, 1993).

The K atoms, located in the holes of the structure, are surrounded by ten O atoms and are linked by ionic contacts.

Experimental

An aqueous solution of cerium(III) nitrate hexahydrate, $Ce(NO_3)_6.6H_2O$, and potassium nitrate, KNO_3 , (ratio 2:3) was evaporated at 313 K. Colourless crystals of $K_3Ce_2(NO_3)_9$ were formed after a few days.

Crystal data

$K_3Ce_2(NO_3)_9$	Mo $K\alpha$ radiation
$M_r = 955.6$	$\lambda = 0.71073 \text{ Å}$
Cubic	Cell parameters from 24
P4132	reflections
a = 13.5975 (8) Å	$\theta = 7.3 - 12.7^{\circ}$
$V = 2514.1 (4) \text{ Å}^3$	$\mu = 4.255 \text{ mm}^{-1}$
Z = 4	T = 293 K
$D_x = 2.525 \text{ Mg m}^{-3}$	Block
-	$0.25 \times 0.25 \times 0.12 \text{ mm}$
	Colourless

1034

K₃Ce₂(NO₃)₉

Data collection

Enraf–Nonius CAD-4 diffractometer	1857 observed reflections $[I > 3\sigma(I)]$
$\theta/2\theta$ scans	$R_{\rm int} = 0.081$
Absorption correction:	$\theta_{\rm max} = 30^{\circ}$
ψ scan (North, Philips	$h=0 \rightarrow 19$
& Mathews, 1968)	$k = 0 \rightarrow 19$
$T_{\min} = 0.5299, T_{\max} =$	$l = 0 \rightarrow 19$
0.9549	2 standard reflections
4064 measured reflections	frequency: 60 min
2910 independent reflections	intensity decay: 2.2%
Refinement	

Refinement on F	Extinction correction: Stout
R = 0.044	& Jensen (1968)
wR = 0.055	Extinction coefficient:
S = 1.25	6.8×10^{-8}
1857 reflections	Atomic scattering factors
65 parameters	from International Tables
$w = 1/\sigma^2(F)$	for X-ray Crystallography
$(\Delta/\sigma)_{\rm max} < 0.01$	(1974, Vol. IV)
$\Delta \rho_{\rm max} = 1.6 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.5 \ {\rm e} \ {\rm \AA}^{-3}$	

Table	1. Fractional	atomic	coordinates	and	equi	vale	n
	isotropic di	splacem	ent paramete	ers (Å	Å ²)		

$B_{eq} = (4$	/3) Σ_i	$\Sigma_{i}\beta_{i}$; a i.aj.
---------------	----------------	-----------------------	------------------

	x	y y	z	Bea
Ce	0.54899 (3)	x	x	1.472 (2)
К	3/8	0.1875 (1)	$\bar{y} + 3/4$	3.05 (3)
N1	0.3995 (5)	0.4124 (5)	0.6397 (5)	2.5 (1)
011	0.4440 (4)	0.3900 (3)	0.5610 (4)	2.47 (9)
012	0.4170 (4)	0.4964 (4)	0.6753 (4)	2.7 (1)
013	0.3419 (5)	0.3555 (5)	0.6778 (4)	4.2 (1)
N2	5/8	0.5127 (4)	y + 1/4	1.57 (9)
O21	0.5934 (4)	0.5952 (4)	0.7418 (4)	2.36 (9)
O22	5/8	0.4463 (3)	y + 1/4	1.92 (8)

Table 2. Selected geometric parameters (Å, °)

Ce-011	2.596 (5)	K-013	2.807 (7)
Ce-012	2.585 (5)	K—O13 ^{iv,v}	2.931 (6)
Ce-021	2.763 (5)	К— О13 ^ш	2.807 (7)
Ce-022	2.652 (4)	K—O21 ^{vi,vii}	2.973 (6)
Ce-011 ^{i,ii}	2.596 (5)	N1-011	1.266 (8)
Ce-O12 ^{i,ii}	2.585 (5)	N1	1.264 (8)
Ce—O21 ^{i,ii}	2.763 (5)	N1-013	1.217 (8)
Ce—O22 ^{i,ii}	2.652 (4)	N2	1.234 (7)
K011	2.909 (5)	N2	1.234 (7)
K011 ⁱⁱⁱ	2.909 (5)	N2	1.275 (5)
K012 ^{iv, v}	3.168 (6)		
011-N1-012	116.9 (6)	021-N2-021 ^{viii}	122.6 (6)
011-N1-013	120.9 (7)	O21—N2—O22	118.7 (5)
O12-N1-O13	122.2 (7)	O21 ^{viii} —N2—O22	118.7 (5)

Symmetry codes: (i) z, x, y; (ii) y, z, x; (iii) $\frac{3}{4} - x, \frac{3}{4} - z, \frac{3}{4} - y$; (iv) $z - \frac{1}{2}, \frac{1}{2} - x, 1 - y$; (v) $\frac{5}{4} - z, y - \frac{1}{4}, \frac{1}{4} + x$; (vi) $1 - x, y - \frac{1}{2}, \frac{3}{2} - z$; (vii) $x - \frac{1}{4}, z - \frac{3}{4}, \frac{5}{4} - y$; (viii) $\frac{5}{4} - x, z - \frac{1}{4}, \frac{1}{4} + y$.

Data were corrected for Lorentz-polarization effects. The unitcell dimensions were found by indexing the powder diffraction pattern with the program *DICVOL*91 (Boultif & Louër, 1991). The final parameters were refined by the program *NBS*AIDS83* (Mighell, Hubbard & Stalick, 1981). The structure was solved in the $P4_132$ space group. The position of the Ce atom was determined by direct methods (*MUL-TAN80*; Main *et al.*, 1980) and confirmed by interpretation

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved of a Patterson map. The remaining atoms were located by one subsequent difference Fourier synthesis. Calculations were performed with the *MolEN* (Fair, 1990) package on a MicroVAX 3100 computer. Diagrams were prepared using *OR*-*TEPII* (Johnson, 1976).

The authors are grateful to Dr L. Toupet for his assistance in the collection of the single-crystal X-ray diffraction data.

Lists of structure factors and anisotropic displacement parameters have been deposited with the IUCr (Reference: DU1104). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Boultif, A. & Louër, D. (1991). J. Appl. Cryst. 24, 987-993.
- Brown, I. D. (1981). Structure and Bonding in Crystals, Vol. II, edited by M. O'Keeffe & A. Navrotsky, ch. 14, pp. 1–30. London: Academic Press.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Guillou, N., Auffrédic, J. P., Louër, M. & Louër, D. (1993). J. Solid State Chem. 106, 295–300.
- Guillou, N., Louër, M., Auffrédic, J. P. & Louër, D. (1995). Acta Cryst. C51, 1029–1032.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Leclaire, A. (1979). J. Solid State Chem. 28, 235-244.

- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Mighell, A. D., Hubbard, C. R. & Stalick, J. K. (1981). NBS*AIDS80. A Fortran Program for Crystallographic Data Evaluation. Natl Bur. Stand. (US Technical Note 1141). (NBS*AIDS83 is an expanded version of NBS*AIDS80.)
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Stout, G. H. & Jensen, L. H. (1968). X-ray Structure Determination. London: MacMillan.
- Zalkin, A., Forrester, J. D. & Templeton, D. H. (1963). J. Chem. Phys. **39**, 2881–2891.

Acta Cryst. (1995). C51, 1034–1038

Barium Perrhenate Monohydrate

TODOR TODOROV AND JOSEF MACÍČEK

Bulgarian Academy of Sciences, Institute of Applied Mineralogy, Rakovski str. 92, 1000 Sofia, Bulgaria

(Received 17 May 1994; accepted 29 November 1994)

Abstract

The triclinic lattice of barium perrhenate monohydrate, Ba(ReO_4)₂.H₂O, is metrically pseudomonoclinic. The